NTSC-IR
Recursive estimation of the stochastic model based on the Kalman filter formulation
Zhang, Xinggang1,2,3; Lu, Xiaochun1,2
2021-01-02
发表期刊GPS SOLUTIONS
ISSN1080-5370
卷号25期号:1页码:7
摘要Based on the batch expectation-maximization (EM) and recursive least-squares algorithms, we develop a new recursive variance components estimation (Recursive-VCE) algorithm that applies a Kalman filter and validates it by a simulated kinematic precise point positioning (PPP) experiment and a PPP test on real-world data. The Recursive-VCE algorithm processes the observations in an epoch-by-epoch or a group-by-group manner. Once new observations are obtained, it updates the estimates of the variance components in a recursive way or on the fly. Therefore, it does not require significant computing resources to store sufficiently large training datasets. The resulting algorithm is simple and able to be easily adapted to determine time-varying behaviours and is shown to converge faster than the batch EM algorithm because the EM algorithm updates the parameters only once after dealing with all the data. Hence, it is a good complement to other batch VCE methods, and its application in real-time data processing is promising.
关键词Variance components estimation Batch EM algorithm Precise point positioning Kalman filter Real-time mode
资助者China Scholarship Council (CSC) ; China Scholarship Council (CSC) ; China Scholarship Council (CSC) ; China Scholarship Council (CSC) ; China Scholarship Council (CSC) ; China Scholarship Council (CSC) ; China Scholarship Council (CSC) ; China Scholarship Council (CSC)
DOI10.1007/s10291-020-01060-4
关键词[WOS]NOISE ; COVARIANCE ; GALILEO ; MINQUE
语种英语
资助项目China Scholarship Council (CSC)
资助者China Scholarship Council (CSC) ; China Scholarship Council (CSC) ; China Scholarship Council (CSC) ; China Scholarship Council (CSC) ; China Scholarship Council (CSC) ; China Scholarship Council (CSC) ; China Scholarship Council (CSC) ; China Scholarship Council (CSC)
WOS研究方向Remote Sensing
WOS类目Remote Sensing
WOS记录号WOS:000606405300003
出版者SPRINGER HEIDELBERG
引用统计
文献类型期刊论文
条目标识符http://210.72.145.45/handle/361003/12113
专题中国科学院国家授时中心
通讯作者Zhang, Xinggang
作者单位1.Chinese Acad Sci, Natl Time Serv Ctr, Xian 710600, Peoples R China
2.Chinese Acad Sci, Key Lab Precis Nav Positioning & Timing Technol, Xian 710600, Peoples R China
3.German Res Ctr Geosci GFZ, D-14473 Potsdam, Germany
推荐引用方式
GB/T 7714
Zhang, Xinggang,Lu, Xiaochun. Recursive estimation of the stochastic model based on the Kalman filter formulation[J]. GPS SOLUTIONS,2021,25(1):7.
APA Zhang, Xinggang,&Lu, Xiaochun.(2021).Recursive estimation of the stochastic model based on the Kalman filter formulation.GPS SOLUTIONS,25(1),7.
MLA Zhang, Xinggang,et al."Recursive estimation of the stochastic model based on the Kalman filter formulation".GPS SOLUTIONS 25.1(2021):7.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Xinggang]的文章
[Lu, Xiaochun]的文章
百度学术
百度学术中相似的文章
[Zhang, Xinggang]的文章
[Lu, Xiaochun]的文章
必应学术
必应学术中相似的文章
[Zhang, Xinggang]的文章
[Lu, Xiaochun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。