Knowledge Management System Of National Time Service Center,CAS
Integrity Monitoring of PPP-RTK Positioning; Part I: GNSS-Based IM Procedure | |
Wang, Kan1,2; El-Mowafy, Ahmed3; Qin, Weijin1,2![]() | |
2022 | |
发表期刊 | REMOTE SENSING
![]() |
卷号 | 14期号:1页码:25 |
摘要 | Nowadays, integrity monitoring (IM) is required for diverse safety-related applications using intelligent transport systems (ITS). To ensure high availability for road transport users for in-lane positioning, a sub-meter horizontal protection level (HPL) is expected, which normally requires a much higher horizontal positioning precision of, e.g., a few centimeters. Precise point positioning-real-time kinematic (PPP-RTK) is a positioning method that could achieve high accuracy without long convergence time and strong dependency on nearby infrastructure. As the first part of a series of papers, this contribution proposes an IM strategy for multi-constellation PPP-RTK positioning based on global navigation satellite system (GNSS) signals. It analytically studies the form of the variance-covariance (V-C) matrix of ionosphere interpolation errors for both accuracy and integrity purposes, which considers the processing noise, the ionosphere activities and the network scale. In addition, this contribution analyzes the impacts of diverse factors on the size and convergence of the HPLs, including the user multipath environment, the ionosphere activity, the network scale and the horizontal probability of misleading information (PMI). It is found that the user multipath environment generally has the largest influence on the size of the converged HPLs, while the ionosphere interpolation and the multipath environments have joint impacts on the convergence of the HPL. Making use of 1 Hz data of Global Positioning System (GPS)/Galileo/Beidou Navigation Satellite System (BDS) signals on L1 and L5 frequencies, for small- to mid-scaled networks, under nominal multipath environments and for a horizontal PMI down to 2x10(-6), the ambiguity-float HPLs can converge to 1.5 m within or around 50 epochs under quiet to medium ionosphere activities. Under nominal multipath conditions for small- to mid-scaled networks, with the partial ambiguity resolution enabled, the HPLs can converge to 0.3 m within 10 epochs even under active ionosphere activities. |
关键词 | integrity monitoring PPP-RTK ionosphere GNSS protection level |
资助者 | Chinese Academy of Science (CAS) "Light of West China" Program ; Chinese Academy of Science (CAS) "Light of West China" Program ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; Australian Research Council-discovery project "Tracking Formation-Flying of Nanosatellites Using Inter-Satellite Links" ; Australian Research Council-discovery project "Tracking Formation-Flying of Nanosatellites Using Inter-Satellite Links" ; Chinese Academy of Science (CAS) "Light of West China" Program ; Chinese Academy of Science (CAS) "Light of West China" Program ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; Australian Research Council-discovery project "Tracking Formation-Flying of Nanosatellites Using Inter-Satellite Links" ; Australian Research Council-discovery project "Tracking Formation-Flying of Nanosatellites Using Inter-Satellite Links" ; Chinese Academy of Science (CAS) "Light of West China" Program ; Chinese Academy of Science (CAS) "Light of West China" Program ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; Australian Research Council-discovery project "Tracking Formation-Flying of Nanosatellites Using Inter-Satellite Links" ; Australian Research Council-discovery project "Tracking Formation-Flying of Nanosatellites Using Inter-Satellite Links" ; Chinese Academy of Science (CAS) "Light of West China" Program ; Chinese Academy of Science (CAS) "Light of West China" Program ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; Australian Research Council-discovery project "Tracking Formation-Flying of Nanosatellites Using Inter-Satellite Links" ; Australian Research Council-discovery project "Tracking Formation-Flying of Nanosatellites Using Inter-Satellite Links" |
DOI | 10.3390/rs14010044 |
关键词[WOS] | AUSTRALIA |
语种 | 英语 |
资助项目 | Chinese Academy of Science (CAS) "Light of West China" Program[XAB2018YDYL01] ; Chinese Academy of Science (CAS) "Light of West China" Program[XAB2019A06] ; National Natural Science Foundation of China[12073034] ; Australian Research Council-discovery project "Tracking Formation-Flying of Nanosatellites Using Inter-Satellite Links"[DP 190102444] |
资助者 | Chinese Academy of Science (CAS) "Light of West China" Program ; Chinese Academy of Science (CAS) "Light of West China" Program ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; Australian Research Council-discovery project "Tracking Formation-Flying of Nanosatellites Using Inter-Satellite Links" ; Australian Research Council-discovery project "Tracking Formation-Flying of Nanosatellites Using Inter-Satellite Links" ; Chinese Academy of Science (CAS) "Light of West China" Program ; Chinese Academy of Science (CAS) "Light of West China" Program ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; Australian Research Council-discovery project "Tracking Formation-Flying of Nanosatellites Using Inter-Satellite Links" ; Australian Research Council-discovery project "Tracking Formation-Flying of Nanosatellites Using Inter-Satellite Links" ; Chinese Academy of Science (CAS) "Light of West China" Program ; Chinese Academy of Science (CAS) "Light of West China" Program ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; Australian Research Council-discovery project "Tracking Formation-Flying of Nanosatellites Using Inter-Satellite Links" ; Australian Research Council-discovery project "Tracking Formation-Flying of Nanosatellites Using Inter-Satellite Links" ; Chinese Academy of Science (CAS) "Light of West China" Program ; Chinese Academy of Science (CAS) "Light of West China" Program ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; Australian Research Council-discovery project "Tracking Formation-Flying of Nanosatellites Using Inter-Satellite Links" ; Australian Research Council-discovery project "Tracking Formation-Flying of Nanosatellites Using Inter-Satellite Links" |
WOS研究方向 | Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS类目 | Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:000751815700001 |
出版者 | MDPI |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://210.72.145.45/handle/361003/13922 |
专题 | 高精度时间传递与精密测定轨研究室 |
通讯作者 | Wang, Kan |
作者单位 | 1.Chinese Acad Sci, Natl Time Serv Ctr, Xian 710600, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.Curtin Univ, Sch Earth & Planetary Sci, Perth, WA 6845, Australia |
推荐引用方式 GB/T 7714 | Wang, Kan,El-Mowafy, Ahmed,Qin, Weijin,et al. Integrity Monitoring of PPP-RTK Positioning; Part I: GNSS-Based IM Procedure[J]. REMOTE SENSING,2022,14(1):25. |
APA | Wang, Kan,El-Mowafy, Ahmed,Qin, Weijin,&Yang, Xuhai.(2022).Integrity Monitoring of PPP-RTK Positioning; Part I: GNSS-Based IM Procedure.REMOTE SENSING,14(1),25. |
MLA | Wang, Kan,et al."Integrity Monitoring of PPP-RTK Positioning; Part I: GNSS-Based IM Procedure".REMOTE SENSING 14.1(2022):25. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论